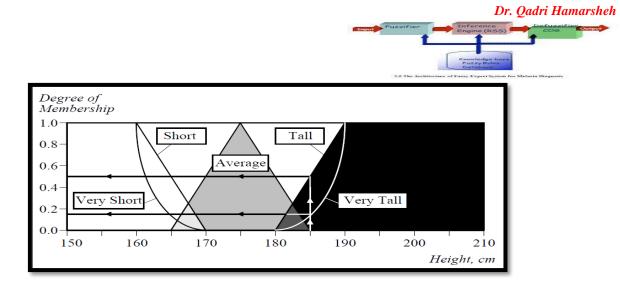


ecture 19

Operations and rules of fuzzy sets

Linguistic variables and hedges:

- Linguistic Variables: Linguistic variables are the input or output variables of the system whose values are words from a natural language, instead of numerical values. The fuzzy set theory is rooted in linguistic variables.
- A linguistic variable is a fuzzy variable. For example:
 - The statement "John is tall" implies that the *linguistic variable* John takes the *linguistic Value* tall.
- The range of possible values of a linguistic variable represents the universe of discourse of that variable.
 - For example, the universe of discourse of the linguistic variable speed might be the range between 0 and 220 km/h and may include such fuzzy subsets as very slow, slow, medium, fast, and very fast.
- A linguistic variable carries with it the concept of fuzzy set gualifiers, called hedges.
- Hedges are terms that modify the shape of fuzzy sets. They include adverbs such as very, somewhat, quite, more or less and slightly.
- Hedges act as operations themselves, For instance.
 - Very performs concentration and creates a new subset. From the set of tall men, it derives the subset of very tall men. Extremely serves the same purpose to a *greater extent*.
 - More or less performs dilation; for example, the set of more or less tall men is broader than the set of tall men (dilation is an operation opposite to concentration. It expands the set).
 - o Indeed, the operation of intensification, it can be done by increasing the degree of membership above 0.5 and decreasing those below **0.5**.
- Hedges are useful as operations, but they can also break down continuums into fuzzy intervals:
 - For example, the following hedges could be used to describe temperature: very cold, moderately cold, slightly cold, neutral, slightly hot, moderately hot and very hot.
- Hedges often used in practical applications:
 - Very, the operation of concentration, it reduces the degree of membership of fuzzy elements using a mathematical square equation, for example: 0.86 membership in the set of tall men will be 0.7396 membership in the set of very tall men.



Fuzzy sets with the hedge very

- Extremely, same purpose as very, for example: 0.86 membership in the set of tall men will be 0.6361 membership in the set of extremely tall men.
- Very very, an extension of concentration, for example: 0.86 membership in the set of tall men will be 0.5470 in the set of very very tall men.
- More or less, the operation of dilation expands a set and increases the degree of membership, for example: 0.86 membership in the set of tall men will be 0.9274 membership in the set of more or less tall men.
- Indeed, the operation of intensification, it can be done by increasing the degree of membership above 0.5 and decreasing those below 0.5. For example: 0.86 membership in the set of tall men will be 0.9608 membership in the set of indeed tall men and 0.24 membership in tall men set, will have a 0.1152 membership in the indeed tall men set.
- In the next figure the **hedges**, **mathematical expression** and **graphical representation** are presented.

Hedge	Mathematical Expression	Graphical Representation
A little	$\left[\mu_{\mathcal{A}}(x)\right]^{1.3}$	
Slightly	$\left[\mu_{\mathcal{A}}(x)\right]^{1.7}$	
Very	$\left[\mu_{\mathcal{A}}(x)\right]^2$	
Extremely	$\left[\mu_{\mathcal{A}}(x)\right]^{3}$	

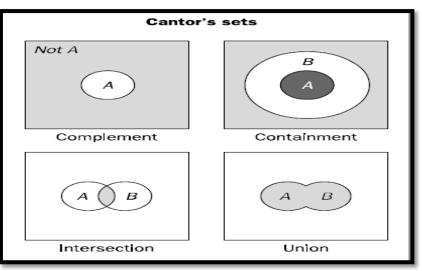
Representation of hedges in fuzzy logic:

		Dr. Qadri Hamar	rsheh
Hedge	Mathematical Expression	Graphical Representation	
Very very	$\left[\mu_{\mathcal{A}}(x)\right]^4$		
More or less	$\sqrt{\mu_{\mathcal{A}}(x)}$		
Somewhat	$\sqrt{\mu_{\mathcal{A}}(x)}$		
Indeed	$2 \left[\mu_{\mathcal{A}}(x) \right]^{2}$ if $0 \le \mu_{\mathcal{A}} \le 0.5$ $1 - 2 \left[1 - \mu_{\mathcal{A}}(x) \right]^{2}$ if $0.5 \le \mu_{\mathcal{A}} \le 1$		

Example: for Alex is tall, $\mu = .86$, Alex is very tall, $\mu = \mu^2 = .74$, Alex is very very tall, $\mu = \mu^4 = .55$.

Operations of fuzzy sets:

- The classical set theory describes interactions between crisp sets. These interactions are called **operations**.
- Cantor's sets:



Operations on classical sets

1) Complement:

- Crisp Sets: Who does not belong to the set?
- Fuzzy Sets: How much do elements not belong to the set?
- It defined as the collection of all elements in the universe that do not reside in the set A.

$$\overline{\mathbf{A}} = \{\mathbf{x}/\mathbf{x} / \notin \mathbf{A}, \mathbf{x} \in \mathbf{X}\}.$$

• The complement of a set is an opposite of this set. For example, if we have the set of tall men, its complement is the set of NOT tall men. If **A** is the fuzzy set, its complement ¬**A** can be found as follows:

$$u_{\neg A}(\mathbf{x}) = \mathbf{1} - \boldsymbol{\mu}_{A}(\mathbf{x})$$

• **Example**: given a fuzzy set of tall men

Tall men (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)

the fuzzy set of NOT tall men will be:
NOT tall men (1/180, 0.75/182.5, 0.5/185, 0.25/187.5, 0/190)

2) Containment:

- Crisp Sets: Which sets belong to which other sets?
- Fuzzy Sets: Which sets belong to other sets?
- A set can contain other sets. The smaller set is called the **subset**.
 - For example, the set of **tall men** contains all tall men; **very tall men** is a subset of **tall men**. However, the **tall men** set is just a subset of the set of **men**.
 - In crisp sets, all elements of a subset entirely belong to a larger set.
 - In fuzzy sets, however, each element can belong less to the subset than to the larger set.
 - The two sets **A** and **B** in universe, if one set (**A**) is contained in another set B, then

$$\mathbf{A} \subseteq \mathbf{B} \rightarrow \boldsymbol{\mu}_{A}(\mathbf{x}) \leq \boldsymbol{\mu}_{B}(\mathbf{x})$$

• Example:

Tall men	(0/180, 0.25/182.5, 0.50/185, 0.75/187.5, 1/190)
Very tall men	(0/180, 0.06/182.5, 0.25/185, 0.56/187.5, 1/190)

- 3) Intersection:
- Crisp Sets: Which element belongs to both sets?
- Fuzzy Sets: To what degree the element is in both sets?
- In classical set theory, an intersection between two sets contains the elements shared by these sets.
 - For example, the intersection of the set of tall men and the set of fat men is the area where these sets overlap.
 - It represents all those elements in the universe **X** that simultaneously reside in (or belongs to) both sets **A** and **B**.

 $\mathbf{A} \cap \mathbf{B} = \{\mathbf{x} / \mathbf{x} \in \mathbf{A} \text{ and } \mathbf{x} \in \mathbf{B}\}.$

- In fuzzy sets, an element may partly belong to both sets with different memberships.
 - A fuzzy intersection is the lower membership in both sets of each element. The fuzzy intersection of two fuzzy sets A and B on universe of discourse X:

 $\mu_{A\cap B}\left(x\right)=\ min\left[\ \mu_A(x),\mu_B(x)\right]=\mu_A(x)\cap\ \mu_B(x)$, where $x\in X$

• Example:

Tall men(0/165, 0/175, 0.0/180, 0.25/182.5, 0.5/185, 1/190)Average men(0/165, 1/175, 0.5/180, 0.25/182.5, 0.0/185, 0/190)

The intersection of these two sets is:

Tall men ∩ average men (0/165, 0/175, 0/180, 0.25/182.5, 0/185, 0/190)

Tall men ∩ average men (0/180, 0.25/182.5,0/185)

- 4) Union
- Crisp Sets: Which element belongs to either set?
- Fuzzy Sets: How much of the element is in either set?

• In classical set, Union represents all the elements in the universe that reside in either the set **A**, the set **B** or both sets **A** and **B**. This operation is called the logical OR.

 $\mathbf{A} \cup \mathbf{B} = \{\mathbf{x}/\mathbf{x} \in \mathbf{A} \text{ or } \mathbf{x} \in \mathbf{B}\}.$

- For example, the union of **tall men** and **fat men** contains all men who are **tall OR fat**.
- In fuzzy sets, the union is the reverse of the intersection. That is, the union is the largest membership value of the element in either set.
 - The fuzzy operation for forming the union of two fuzzy sets **A** and **B** on universe **X** can be given as:

 $\mu_{A\cup B}\left(x\right)=\ max\left[\ \mu_{A}(x),\mu_{B}(x)\right]=\mu_{A}(x)\cup\ \mu_{B}(x)$, where $x\in X$

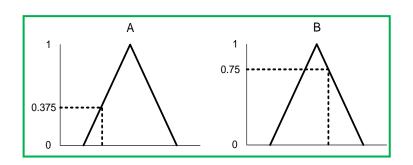
• Example:

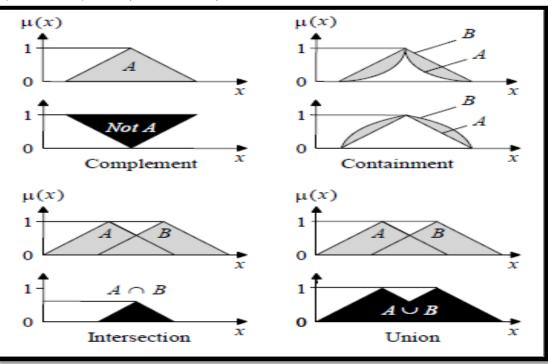
Tall men(0/165, 0/175, 0.0/180, 0.25/182.5, 0.5/185, 1/190)Average men(0/165, 1/175, 0.5/180, 0.25/182.5, 0.0/185, 0/190)

Average men (0/165, 1/175, 0.5/180, 0.25/182.5, 0.0/185, 0/190) The union of these two sets is:

Tall men U average men (0/165,1/175,0.5/180, 0.25/182.5, 0.5/185, 1/190)

• Example:





Operations of fuzzy sets

Operations on fuzzy sets:

• Crisp and fuzzy sets have the same properties; frequently used properties of fuzzy sets are described below.

Consider two sets **A** and **B** defined on the universe **X**.

1) Commutativity:

 $\mathbf{A} \cup \mathbf{B} = \mathbf{B} \cup \mathbf{A}$ $\mathbf{A} \cap \mathbf{B} = \mathbf{B} \cap \mathbf{A}$

• Example:

Tall men OR short men = short men OR tall men

Tall men AND short men = short men AND tall men

2) Associativity:

 $\mathbf{A} \cup (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}$

- $\mathbf{A} \cap (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}$
- Example:
 - Tall men OR (short men OR average men) =

(tall men OR short men) OR average men

Tall men AND (short men AND average men) =

(tall men AND short men) AND average men

3) Distributivity:

```
\mathbf{A} \cup (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{A} \cup \mathbf{C})
```

```
\mathbf{A} \cap (\mathbf{B} \cup \mathbf{C}) = \mathbf{A} \cap \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{C})
```

- 4) Idempotency:
 - $\mathbf{A} \cup \mathbf{A} = \mathbf{A}$
 - $\mathbf{A} \cap \mathbf{A} = \mathbf{A}$

5) Identity:

- $\mathbf{A} \cup \phi = \mathbf{A}$ $\mathbf{A} \cap \mathbf{X} = \mathbf{A}$
- $\mathbf{A} \cap \mathbf{A} = \mathbf{A}$ $\mathbf{A} \cap \mathbf{\emptyset} = \mathbf{\emptyset}$
- $\mathbf{A} \cup \mathbf{X} = \mathbf{X}.$
- Example:
 - tall men OR undefined = tall men
 - tall men AND unknown = tall men
 - tall men AND undefined = undefined
 - tall men OR unknown = unknown

Where

- Undefined is an empty (null) set, the set having all degree of memberships equal to 0.
- Unknown is a set having all degree of memberships equal to 1.
- 6) Transitivity:

If $A \subseteq B \subseteq C$, then $A \subseteq C$, \subseteq means contained.

- Every set contains the subsets of its subsets.
- Example:
 - **IF** (extremely tall men \subseteq very tall men)
 - **AND** (very tall men \subseteq tall men)
 - **THEN** (extremely tall men \subseteq tall men)

7) Involution:

$$\neg(\neg A) = A$$

- 8) De Morgan's Law:
 - $\overline{\mathbf{A} \cap \mathbf{B}} = \overline{\mathbf{A}} \cup \overline{\mathbf{B}}$ $\overline{\mathbf{A} \cup \mathbf{B}} = \overline{\mathbf{A}} \cap \overline{\mathbf{B}}$
- Using fuzzy set operations, their properties and hedges, we can easily obtain a variety of fuzzy sets from the existing ones.
 - For example, if we have fuzzy set **A** of tall men and fuzzy set **B** of short men, we can derive fuzzy sets:
 - C of not very tall men and not very short men:

$$\mu_C(x) = [1 - \mu_A(x)^2] \cap [1 - (\mu_B(x)^2]]$$

D of not very very tall and not very very short men:

$$\mu_D(x) = [1 - \mu_A(x)^4] \cap [1 - (\mu_B(x)^4]]$$

Solved Example:

Given the classical sets, $A = \{9, 5, 6, 8, 10\}$ $\mathbf{B} = \{1, 2, 3, 7, 9\}$ $C = \{1, 0\}$ Defined on universe **X** = {Set of all 'n' natural no} Prove the classical set properties associativity. **Solution**: The associative property is given by 1. $\mathbf{A} \cup (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}$. LHS $\mathbf{A} \cup (\mathbf{B} \cup \mathbf{C})$ (a) $\mathbf{B} \cup \mathbf{C} = \{2, 3, 7, 9, 1, 0\}.$ **(b)** $\mathbf{A} \cup (\mathbf{B} \cup \mathbf{C}) = \{5, 6, 8, 10, 2, 3, 7, 9, 1, 0\}.$ RHS $(\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}$ (a) $(\mathbf{A} \cup \mathbf{B}) = \{9, 5, 6, 8, 10, 1, 2, 3, 7\}.$ **(b)** $(\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C} = \{9, 5, 6, 10, 8, 1, 2, 3, 7, 0\}.$ LHS = RHS $\mathbf{A} \cup (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}.$ 2. $(\mathbf{A} \cap (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}$ LHS (a) $(B \cap C) = \{1\}.$ **(b)** $A \cap (B \cap C) = \{\emptyset\}.$ RHS $(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}$ (a) $(A \cap B) = \{9\}.$

(b) $(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C} = \{\emptyset\}.$

$\mathbf{LHS} = \mathbf{RHS}$

 $\mathbf{A} \cap (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}.$

Fuzzy rules:

• A fuzzy rule can be defined as a conditional statement in the form:

IF 🗙 is 🗛 THEN y is

Where \mathbf{x} and \mathbf{y} are linguistic variables; and \mathbf{A} and \mathbf{B} are linguistic values.

- Antecedent The initial (or "if") part of a fuzzy rule.
- **Consequent** The **final** (or "**then**") part of a fuzzy rule.
- An example might be a **temperature controller**:

the break temperature is HOT and the speed is NOT VERY FAST

then break SLIGHTLY DECREASED.

What is the difference between classical and fuzzy rules?

• A classical **IF-THEN** rule uses binary logic, for example,

Rule: 1

IF speed is > 100

If

THEN stopping_distance is long

Rule: 2

IF speed is < 40

THEN stopping_distance is short

- The variable **speed** can have any numerical value between **0** and **220 km/h**, but the linguistic variable **stopping_distance** can take either value **long** or **short**.
- In other words, classical rules are expressed in the **black-and-white** language of Boolean logic.
- We can also represent the stopping distance rules in a **fuzzy form**:

Rule: 1

IF speed is fast

THEN stopping_distance is long

Rule: 2

IF speed is slow

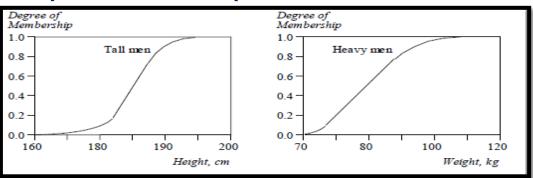
THEN stopping_distance is short

• In **fuzzy rules**, the linguistic variable **speed** also has the range (the universe of discourse) between 0 and 220 km/h, but this range includes fuzzy sets, such as **slow**, **medium** and **fast**. The universe of discourse of the linguistic variable **stopping_distance** can be between 0 and 300 m and may include such fuzzy sets as **short**, **medium** and **long**.

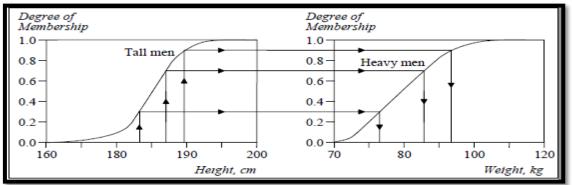
Fuzzy rules relate fuzzy sets:

• In a **fuzzy system**, **all rules fire to some extent**, i.e., fire partially. If the antecedent is true to some degree of membership, then the consequent is also true to that same degree.

Example: Fuzzy sets of tall and heavy men.



- These fuzzy sets provide the basis for a weight estimation model. The model is based on a relationship between a man's height and his weight: IF height is tall THEN weight is heavy
- The value of the output or a truth membership grade of the rule consequent **can be estimated directly from** a corresponding truth membership grade in the antecedent. This form of fuzzy inference uses a method called **monotonic selection**.



A fuzzy rule can have multiple antecedents, for example:

•	IF	project_duration is long
	AND	<pre>project_staffing is large</pre>
	AND	project_funding is inadequate
	THEN	risk is high.
•	IF	service is excellent
	OR	food is delicious
	THEN	tip is generous.

• The **consequent** of a fuzzy rule can also include **multiple parts**, for instance:

IF	temperature is hot	
THEN	hot_water is reduced;	
	cold water is increase	

- How are all these output fuzzy sets combined and transformed into a single number?
 - To obtain a single crisp solution, a fuzzy expert system first aggregates all output fuzzy sets into a single output fuzzy set, and then defuzzifies the resulting fuzzy set into a single number.

d